Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 350
Filtrar
1.
BMC Plant Biol ; 24(1): 274, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605295

RESUMO

Temperature is one of the important environmental factors affecting plant growth, yield and quality. Moreover, appropriately low temperature is also beneficial for tuber coloration. The red potato variety Jianchuanhong, whose tuber color is susceptible to temperature, and the purple potato variety Huaxinyangyu, whose tuber color is stable, were used as experimental materials and subjected to 20 °C (control check), 15 °C and 10 °C treatments during the whole growth period. The effects of temperature treatment on the phenotype, the expression levels of structural genes related to anthocyanins and the correlations of each indicator were analyzed. The results showed that treatment at 10 °C significantly inhibited the potato plant height, and the chlorophyll content and photosynthetic parameters in the leaves were reduced, and the enzyme activities of SOD and POD were significantly increased, all indicating that the leaves were damaged. Treatment at 10 °C also affected the tuberization of Huaxinyangyu and reduced the tuberization and coloring of Jianchuanhong, while treatment at 15 °C significantly increased the stem diameter, root-to-shoot ratio, yield and content of secondary metabolites, especially anthocyanins. Similarly, the expression of structural genes were enhanced in two pigmented potatoes under low-temperature treatment conditions. In short, proper low temperature can not only increase yield but also enhance secondary metabolites production. Previous studies have not focused on the effects of appropriate low-temperature treatment during the whole growth period of potato on the changes in metabolites during tuber growth and development, these results can provide a theoretical basis and technical guidance for the selection of pigmented potatoes with better nutritional quality planting environment and the formulation of cultivation measures.


Assuntos
Solanum tuberosum , Temperatura , Solanum tuberosum/metabolismo , Antocianinas/metabolismo , Temperatura Baixa , Fotossíntese , Tubérculos/genética
2.
New Phytol ; 241(4): 1676-1689, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38044709

RESUMO

In potato, stolon swelling is a complex and highly regulated process, and much more work is needed to fully understand the underlying mechanisms. We identified a novel tuber-specific basic helix-loop-helix (bHLH) transcription factor, StbHLH93, based on the high-resolution transcriptome of potato tuber development. StbHLH93 is predominantly expressed in the subapical and perimedullary region of the stolon and developing tubers. Knockdown of StbHLH93 significantly decreased tuber number and size, resulting from suppression of stolon swelling. Furthermore, we found that StbHLH93 directly binds to the plastid protein import system gene TIC56 promoter, activates its expression, and is involved in proplastid-to-amyloplast development during the stolon-to-tuber transition. Knockdown of the target TIC56 gene resulted in similarly problematic amyloplast biogenesis and tuberization. Taken together, StbHLH93 functions in the differentiation of proplastids to regulate stolon swelling. This study highlights the critical role of proplastid-to-amyloplast interconversion during potato tuberization.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos/genética , Tubérculos/metabolismo , Transcriptoma , Plastídeos/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Planta ; 259(1): 14, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38070043

RESUMO

MAIN CONCLUSION: Understanding BEL transcription factors roles in potato and tomato varies considerably with little overlap. The review suggests reciprocal use of gained results to proceed with the knowledge in both crops The proper development of organs that plants use for reproduction, like fruits or tubers, is crucial for the survival and competitiveness of the species and thus subject to strict regulations. Interestingly, the controls of potato (Solanum tuberosum) tuber and tomato (S. lycopersicum) fruit development use common mechanisms, including the action of the BEL transcription factors (TFs). Although more than ten BEL genes have been identified in either genome, only a few of them have been characterized. The review summarizes knowledge of BEL TFs' roles in these closely related Solanaceae species, focusing on those that are essential for tuberization in potato, namely StBEL5, StBEL11 and StBEL29, and for fruit development in tomato - SlBEL11, SlBL2 and SIBL4. Comprehension of the roles of individual BEL TFs, however, is not yet sufficient. Different levels of understanding of important characteristics are described, such as BEL transcript accumulation patterns, their mobility, BEL protein interaction with KNOX partners, subcellular localisation, and their target genes during initiation and development of the organs in question. A comparison of the knowledge on BEL TFs and their mechanisms of action in potato and tomato may provide inspiration for faster progress in the study of both models through the exchange of information and ideas. Both crops are extremely important for human nutrition. In addition, their production is likely to be threatened by the upcoming climate change, so there is a particular need for breeding using a deep knowledge of control mechanisms.


Assuntos
Solanum lycopersicum , Solanum tuberosum , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Melhoramento Vegetal , Tubérculos/genética , Tubérculos/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Verduras/metabolismo , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Plant Cell Rep ; 42(11): 1791-1808, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37747544

RESUMO

KEY MESSAGE: CeOLE genes exhibit a tuber-predominant expression pattern and their mRNA/protein abundances are positively correlated with oil accumulation during tuber development. Overexpression could significantly increase the oil content of tobacco leaves. Oleosins (OLEs) are abundant structural proteins of lipid droplets (LDs) that function in LD formation and stabilization in seeds of oil crops. However, little information is available on their roles in vegetative tissues. In this study, we present the first genome-wide characterization of the oleosin family in tigernut (Cyperus esculentus L., Cyperaceae), a rare example accumulating high amounts of oil in underground tubers. Six members identified represent three previously defined clades (i.e. U, SL and SH) or six out of seven orthogroups (i.e. U, SL1, SL2, and SH1-3) proposed in this study. Comparative genomics analysis reveals that lineage-specific expansion of Clades SL and SH was contributed by whole-genome duplication and dispersed duplication, respectively. Moreover, presence of SL2 and SH3 in Juncus effuses implies their appearance sometime before Cyperaceae-Juncaceae divergence, whereas SH2 appears to be Cyperaceae specific. Expression analysis showed that CeOLE genes exhibit a tuber-predominant expression pattern and transcript levels are considerably more abundant than homologs in the close relative Cyperus rotundus. Moreover, CeOLE mRNA and protein abundances were shown to positively correlate with oil accumulation during tuber development. Additionally, two dominant isoforms (i.e. CeOLE2 and -5) were shown to locate in LDs as well as the endoplasmic reticulum of tobacco (Nicotiana benthamiana) leaves, and are more likely to function in homo and heteromultimers. Furthermore, overexpression of CeOLE2 and -5 in tobacco leaves could significantly increase the oil content, supporting their roles in oil accumulation. These findings provide insights into lineage-specific family evolution and putative roles of CeOLE genes in oil accumulation of vegetative tissues, which facilitate further genetic improvement for tigernut.


Assuntos
Cyperaceae , Cyperus , Cyperus/genética , Cyperus/metabolismo , Cyperaceae/genética , Cyperaceae/metabolismo , Óleos de Plantas/metabolismo , Sementes/genética , Tubérculos/genética , Tubérculos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Plant Commun ; 4(3): 100547, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36635965

RESUMO

Plants program their meristem-associated developmental switches for timely adaptation to a changing environment. Potato (Solanum tuberosum L.) tubers differentiate from specialized belowground branches or stolons through radial expansion of their terminal ends. During this process, the stolon apex and closest axillary buds enter a dormancy state that leads to tuber eyes, which are reactivated the following spring and generate a clonally identical plant. The potato FLOWERING LOCUS T homolog SELF-PRUNING 6A (StSP6A) was previously identified as the major tuber-inducing signal that integrates day-length cues to control the storage switch. However, whether some other long-range signals also act as tuber organogenesis stimuli remains unknown. Here, we show that the florigen SELF PRUNING 3D (StSP3D) and FLOWERING LOCUS T-like 1 (StFTL1) genes are activated by short days, analogously to StSP6A. Overexpression of StSP3D or StFTL1 promotes tuber formation under non-inductive long days, and the tuber-inducing activity of these proteins is graft transmissible. Using the non-tuber-bearing wild species Solanum etuberosum, a natural SP6A null mutant, we show that leaf-expressed SP6A is dispensable for StSP3D long-range activity. StSP3D and StFTL1 mediate secondary activation of StSP6A in stolon tips, leading to amplification of this tuberigen signal. StSP3D and StFTL1 were observed to bind the same protein partners as StSP6A, suggesting that they can also form transcriptionally active complexes. Together, our findings show that additional mobile tuber-inducing signals are regulated by the photoperiodic pathway.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/metabolismo , Fatores de Transcrição/metabolismo , Tubérculos/genética , Tubérculos/metabolismo
6.
Phytochemistry ; 206: 113529, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36473515

RESUMO

Suberin deposition involves both phenolic and aliphatic polymer biosynthesis and deposition in the same tissue. Therefore, any consideration of exploiting suberin for crop enhancement (e.g., enhanced storage, soil borne disease resistance) requires knowledge of both phenolic and aliphatic component biosynthesis and their coordinated, temporal deposition. In the present study, we use a wound-healing potato tuber system to explore global transcriptome changes during the early stages of wound-healing. Wounding leads to initial and substantial transcriptional changes that follow distinctive temporal patterns - primary metabolic pathways were already functional, or up-regulated immediately, and maintained at levels that would allow for precursor carbon skeletons and energy to feed into downstream metabolic processes. Genes involved in pathways for phenolic production (i.e., the shikimate pathway and phenylpropanoid metabolism) were up-regulated early while those involved in aliphatic suberin production (i.e., fatty acid biosynthesis and modification) were transcribed later into the time course. The pattern of accumulation of genes associated with ABA biosynthesis and degradation steps support a role for ABA in regulating aliphatic suberin production. Evaluation of putative Casparian strip membrane-like genes pinpointed wound-responsive candidates that may mediate the suberin deposition process.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Transcriptoma , Lipídeos , Tubérculos/genética , Tubérculos/metabolismo , Fenóis/metabolismo , Regulação da Expressão Gênica de Plantas
7.
G3 (Bethesda) ; 13(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36477309

RESUMO

In this study, we extend research on genomic prediction (GP) to polysomic polyploid plant species with the main objective to investigate single-trait (ST) and multitrait (MT) multienvironment (ME) models using field trial data from 3 locations in Sweden [Helgegården (HEL), Mosslunda (MOS), Umeå (UM)] over 2 years (2020, 2021) of 253 potato cultivars and breeding clones for 5 tuber weight traits and 2 tuber flesh quality characteristics. This research investigated the GP of 4 genome-based prediction models with genotype × environment interactions (GEs): (1) ST reaction norm model (M1), (2) ST model considering covariances between environments (M2), (3) ST M2 extended to include a random vector that utilizes the environmental covariances (M3), and (4) MT model with GE (M4). Several prediction problems were analyzed for each of the GP accuracy of the 4 models. Results of the prediction of traits in HEL, the high yield potential testing site in 2021, show that the best-predicted traits were tuber flesh starch (%), weight of tuber above 60 or below 40 mm in size, and the total tuber weight. In terms of GP, accuracy model M4 gave the best prediction accuracy in 3 traits, namely tuber weight of 40-50 or above 60 mm in size, and total tuber weight, and very similar in the starch trait. For MOS in 2021, the best predictive traits were starch, weight of tubers above 60, 50-60, or below 40 mm in size, and the total tuber weight. MT model M4 was the best GP model based on its accuracy when some cultivars are observed in some traits. For the GP accuracy of traits in UM in 2021, the best predictive traits were the weight of tubers above 60, 50-60, or below 40 mm in size, and the best model was MT M4, followed by models ST M3 and M2.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Interação Gene-Ambiente , Melhoramento Vegetal , Genótipo , Fenótipo , Genômica , Tubérculos/genética , Amido
8.
Plant J ; 113(2): 327-341, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36448213

RESUMO

To cope with cold stress, plants have developed antioxidation strategies combined with osmoprotection by sugars. In potato (Solanum tuberosum) tubers, which are swollen stems, exposure to cold stress induces starch degradation and sucrose synthesis. Vacuolar acid invertase (VInv) activity is a significant part of the cold-induced sweetening (CIS) response, by rapidly cleaving sucrose into hexoses and increasing osmoprotection. To discover alternative plant tissue pathways for coping with cold stress, we produced VInv-knockout lines in two cultivars. Genome editing of VInv in 'Désirée' and 'Brooke' was done using stable and transient expression of CRISPR/Cas9 components, respectively. After storage at 4°C, sugar analysis indicated that the knockout lines showed low levels of CIS and maintained low acid invertase activity in storage. Surprisingly, the tuber parenchyma of vinv lines exhibited significantly reduced lipid peroxidation and reduced H2 O2 levels. Furthermore, whole plants of vinv lines exposed to cold stress without irrigation showed normal vigor, in contrast to WT plants, which wilted. Transcriptome analysis of vinv lines revealed upregulation of an osmoprotectant pathway and ethylene-related genes during cold temperature exposure. Accordingly, higher expression of antioxidant-related genes was detected after exposure to short and long cold storage. Sugar measurements showed an elevation of an alternative pathway in the absence of VInv activity, raising the raffinose pathway with increasing levels of myo-inositol content as a cold tolerance response.


Assuntos
Temperatura Baixa , Solanum tuberosum , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo , Metabolismo dos Carboidratos , Hexoses/metabolismo , Sacarose/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Tubérculos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077378

RESUMO

Potato is an important crop due to its nutritional value and high yield potential. Improving the quality and quantity of tubers remains one of the most important breeding objectives. Genetic mapping helps to identify suitable markers for use in the molecular breeding, and combined with transgenic approaches provides an efficient way for gaining desirable traits. The advanced plant breeding tools and molecular techniques, e.g., TALENS, CRISPR-Cas9, RNAi, and cisgenesis, have been successfully used to improve the yield and nutritional value of potatoes in an increasing world population scenario. The emerging methods like genome editing tools can avoid incorporating transgene to keep the food more secure. Multiple success cases have been documented in genome editing literature. Recent advances in potato breeding and transgenic approaches to improve tuber quality and quantity have been summarized in this review.


Assuntos
Solanum tuberosum , Edição de Genes/métodos , Fenótipo , Melhoramento Vegetal/métodos , Tubérculos/genética , Solanum tuberosum/genética
10.
Int J Mol Sci ; 23(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36012392

RESUMO

SELF-PRUNING 6A (SP6A), a homolog of FLOWERING LOCUS T (FT), has been identified as tuberigen in potato. StSP6A is a mobile signal synthesized in leaves and transmitted to the stolon through phloem, and plays multiple roles in the growth and development of potato. However, the global StSP6A protein interaction network in potato remains poorly understood. In this study, BK-StSP6A was firstly used as the bait to investigate the StSP6A interaction network by screening the yeast two-hybrid (Y2H) library of potato, resulting in the selection of 200 independent positive clones and identification of 77 interacting proteins. Then, the interaction between StSP6A and its interactors was further confirmed by the Y2H and BiFC assays, and three interactors were selected for further expression analysis. Finally, the expression pattern of Flowering Promoting Factor 1.1 (StFPF1.1), No Flowering in Short Days 1 and 2 (StNFL1 and StNFL2) was studied. The three genes were highly expressed in flowers or flower buds. StFPF1.1 exhibited an expression pattern similar to that of StSP6A at the stolon swelling stages. StPHYF-silenced plants showed up-regulated expression of StFPF1.1 and StSP6A, while expression of StNFL1 and StNFL2 was down-regulated in the stolon. The identification of these interacting proteins lays a solid foundation for further functional studies of StSP6A.


Assuntos
Solanum tuberosum , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos/genética , Solanum tuberosum/metabolismo
11.
Nature ; 606(7914): 535-541, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35676481

RESUMO

Potato (Solanum tuberosum L.) is the world's most important non-cereal food crop, and the vast majority of commercially grown cultivars are highly heterozygous tetraploids. Advances in diploid hybrid breeding based on true seeds have the potential to revolutionize future potato breeding and production1-4. So far, relatively few studies have examined the genome evolution and diversity of wild and cultivated landrace potatoes, which limits the application of their diversity in potato breeding. Here we assemble 44 high-quality diploid potato genomes from 24 wild and 20 cultivated accessions that are representative of Solanum section Petota, the tuber-bearing clade, as well as 2 genomes from the neighbouring section, Etuberosum. Extensive discordance of phylogenomic relationships suggests the complexity of potato evolution. We find that the potato genome substantially expanded its repertoire of disease-resistance genes when compared with closely related seed-propagated solanaceous crops, indicative of the effect of tuber-based propagation strategies on the evolution of the potato genome. We discover a transcription factor that determines tuber identity and interacts with the mobile tuberization inductive signal SP6A. We also identify 561,433 high-confidence structural variants and construct a map of large inversions, which provides insights for improving inbred lines and precluding potential linkage drag, as exemplified by a 5.8-Mb inversion that is associated with carotenoid content in tubers. This study will accelerate hybrid potato breeding and enrich our understanding of the evolution and biology of potato as a global staple food crop.


Assuntos
Produtos Agrícolas , Evolução Molecular , Genoma de Planta , Solanum tuberosum , Produtos Agrícolas/genética , Genoma de Planta/genética , Melhoramento Vegetal , Tubérculos/genética , Solanum tuberosum/genética
12.
Plant Physiol Biochem ; 185: 279-289, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35724622

RESUMO

Calcium-dependent protein kinase (CDPK) is a Ca2+ sensor that can phosphorylate and regulate respiratory burst oxidase homolog (Rboh), inducing the production of O2-. However, little is known about how StCDPK23 affects ROS production in the deposition of suberin at potato tuber wounds by regulating StRbohs. In this study, we found that StCDPK23 was induced significantly by the wound in potato tubers, which contains a typical CDPK structure, and was highly homologous to AtCDPK13 in Arabidopsis. Subcellular localization of results showed that StCDPK23 was located in the nucleus and plasma membrane of N. benthamiana epidermis cells. StCDPK23-overexpressing plants and tubers were obtained via Agrobacterium transformation. The expression of StCDPK23 was significantly upregulated in the overexpressing tubers during healing and increased 2.3-fold at 5 d. The expression levels of StRbohs (A-E) were also upregulated in the overexpressing tubers. Among them, StrbohA showed significant expression in the early stage of healing, which was 16.3-fold higher than that of the wild-type tubers at 8 h of healing. Moreover, the overexpressing tubers produced more O2- and H2O2, which are 1.1-fold and 3.5-fold higher than that of the wild-type at 8 h, respectively. More SPP deposition was observed at the wounds of the overexpressing tubers. The thickness of SPP cell layers was 53.2% higher than that of the wild-type after 3 d of the wound. It is suggested that StCDPK23 may participate in the wound healing of potato tubers by regulating Strbohs, which mainly contributes to H2O2 production during healing.


Assuntos
Solanum tuberosum , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos/genética , Tubérculos/metabolismo , Solanum tuberosum/metabolismo , Cicatrização/genética
13.
Zhongguo Zhong Yao Za Zhi ; 47(9): 2281-2287, 2022 May.
Artigo em Chinês | MEDLINE | ID: mdl-35531673

RESUMO

Tuber rot has become a serious problem in the large-scale cultivation of Gastrodia elata. In this study, we compared the resistance of different ecotypes of G. elata to tuber rot by field experiments on the basis of the investigation of G. elata diseases. The histological observation and transcriptome analysis were conducted to reveal the resistance differences and the underlying mechanisms among different ecotypes. In the field, G. elata f. glauca had the highest incidence of tuber rot, followed by G. elata f. viridis, and G. elata f. elata and G. elata f. glauca×G. elata f. elata showed the lowest incidence. Tuber rot showcased obvious plant source specificity and mainly occurred in the buds and bottom of G. elata plants. After infection, the pathogen spread hyphae in host cortex cells, which can change the endophytic fungal community structure in the cortex and parenchyma of G. elata. G. elata f. glauca had thinner lytic layer and more sugar lumps in the parenchyma than G. elata f. elata. The transcription of genes involved in immune defense, enzyme synthesis, polysaccharide synthesis, carbohydrate transport and metabolism, hydroxylase activity, and aromatic compound synthesis had significant differences between G. elata f. glauca and G. elata f. elata. These findings suggested that the differences in resis-tance to tuber rot among different ecotypes of G. elata may be related to the varied gene expression patterns and secondary metabolites. This study provides basic data for the prevention and control of tuber rot and the improvement of planting technology for G. elata.


Assuntos
Gastrodia , Ecótipo , Gastrodia/microbiologia , Perfilação da Expressão Gênica , Tubérculos/genética
14.
Sci Rep ; 12(1): 8423, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589821

RESUMO

Two Dioscorea alata populations were generated by hand pollination between contrasted diploid genitors. Population A (74F × Kabusa) was composed of 121 progenies while population B (74F × 14M) involved 193 progenies. These two populations were assessed over two consecutive years regarding important tuber quality traits. Analysis of variance showed that the genotype had the greatest influence on the phenotypic scores. Also for some traits, effect of the year_replicate was strong. The heritabilities of most traits were high. Based on these data and a reference high-density genetic map of greater yam, a total of 34 quantitative trait loci (QTLs) were detected on 8 of the 20 yam chromosomes. They corresponded to five of each of the following traits: tuber size, shape regularity, tubercular roots, skin texture, tuber flesh oxidation, six for oxidation ratio and three for flesh colour. The fraction of total phenotypic variance attributable to a single QTL ranged from 11.1 to 43.5%. We detected significant correlations between traits and QTL colocalizations that were consistent with these correlations. A majority of QTLs (62%) were found on linkage group LG16, indicating that this chromosome could play a major role in genetic control of the investigated traits. In addition, an inversion involving this chromosome was detected in the Kabusa male. Nine QTLs were validated on a diversity panel, including three for tuber size, three for shape regularity, two for skin texture and one for tubercular roots. The approximate physical localization of validated QTLs allowed the identification of various candidates genes. The validated QTLs should be useful for breeding programs using marker-assisted selection to improve yam tuber quality.


Assuntos
Dioscorea , Locos de Características Quantitativas , Dioscorea/genética , Ligação Genética , Fenótipo , Melhoramento Vegetal , Tubérculos/genética , Locos de Características Quantitativas/genética
16.
BMC Genomics ; 23(1): 263, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35382736

RESUMO

BACKGROUND: Wound healing is a representative phenomenon of potato tubers subjected to mechanical injuries. Our previous results found that benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) promoted the wound healing of potato tubers. However, the molecular mechanism related to inducible wound healing remains unknown. RESULTS: Transcriptomic evaluation of healing tissues from potato tubers at three stages, namely, 0 d (nonhealing), 5 d (wounded tubers healed for 5 d) and 5 d (BTH-treated tubers healed for 5 d) using RNA-Seq and differentially expressed genes (DEGs) analysis showed that more than 515 million high-quality reads were generated and a total of 7665 DEGs were enriched, and 16 of these DEGs were selected by qRT-PCR analysis to further confirm the RNA sequencing data. Gene ontology (GO) enrichment analysis indicated that the most highly DEGs were involved in metabolic and cellular processes, and KEGG enrichment analysis indicated that a large number of DEGs were associated with plant hormones, starch and sugar metabolism, fatty acid metabolism, phenylpropanoid biosynthesis and terpenoid skeleton biosynthesis. Furthermore, a few candidate transcription factors, including MYB, NAC and WRKY, and genes related to Ca2+-mediated signal transduction were also found to be differentially expressed during wound healing. Most of these enriched DEGs were upregulated after BTH treatment. CONCLUSION: This comparative expression profile provided useful resources for studies of the molecular mechanism via these promising candidates involved in natural or elicitor-induced wound healing in potato tubers.


Assuntos
Solanum tuberosum , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Tubérculos/genética , Tubérculos/metabolismo , Solanum tuberosum/metabolismo , Transcriptoma , Cicatrização/genética
17.
Planta ; 255(5): 97, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35380306

RESUMO

MAIN CONCLUSION: Tuber-omics in potato with the T- and D-types of cytoplasm showed different sets of differentially expressed genes and proteins in response to cold storage. For the first time, we report differences in gene and protein expression in potato (Solanum tuberosum L.) tubers possessing the T- or D-type cytoplasm. Two F1 diploid reciprocal populations, referred to as T and D, were used. The pooling strategy was applied for detection of differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) in tubers consisting of extreme chip colour after cold storage. RNA and protein bulks were constructed from contrasting phenotypes. We recognized 48 and 15 DEGs for the T and D progenies, respectively. DEPs were identified in the amyloplast and mitochondrial fractions. In the T-type cytoplasm, only 2 amyloplast-associated and 5 mitochondria-associated DEPs were detected. Of 37 mitochondria-associated DEPs in the D-type cytoplasm, there were 36 downregulated DEPs in the dark chip colour bulks. These findings suggest that T- and D-type of cytoplasm might influence sugar accumulation in cold-stored potato tubers in different ways. We showed that the mt/nucDNA ratio was higher in D-possessing tubers after cold storage than in T progeny. For the D-type cytoplasm, the pt/nucDNA ratio was higher for tubers characterized by dark chip colour than for those with light chip colour. Our findings suggest that T- and D-type cytoplasm might influence sugar accumulation in cold-stored potato tubers in different ways.


Assuntos
Solanum tuberosum , Temperatura Baixa , Citoplasma/genética , Regulação da Expressão Gênica de Plantas , Tubérculos/genética , Tubérculos/metabolismo , Proteômica , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Transcriptoma
18.
Sci Rep ; 12(1): 4484, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296723

RESUMO

Somatic hybridization has been frequently used to overcome sexual incompatibility between potato and its secondary germplasm. The primary objective of this study was to produce and evaluate somatic hybrids of Solanum tuberosum (Stub) and S. bulbocastanum (Sblb) for breeding purposes. In 2007, 23 somatic hybrids were produced using an electrofusion of mesophyll protoplasts of diploid (2n = 2x = 24) potato line StubDH165 and S. bulbocastanum PI24351 (Sblb66). Phenotype of somatic hybrids in field conditions were evaluated, together with constitution and stability of 30 nuclear (ncSSR) and 27 cytoplasmic (cpSSR) microsatellite markers and content of main glycoalkaloids. All somatic hybrids had very high field resistance against late blight, but the plants were infertile: the viability of pollen grains insignificantly varied between 0.58 and 8.97%. A significant somaclonal variation was observed in terms of the morphology of plants, the date of emergence, the quantity of harvested tubers, the content of glycoalkaloids in foliage, and nuclear microsatellite markers (ncSSR). The analysis of ncSSR identified five distinct genotypes of hybrids partly associated with phenotype variations. The process of somatic hybridization with regeneration of shoots was identified as the most likely source of somaclonal variation because the ncSSR genotypes of hybrids, which were maintained in vitro, remained stable for more than 10 years. The infertile somatic hybrids have no practical breeding potential, but they are considered very suitable for advanced studies of the differential expression of genes in the pathways linked to dormancy of tubers and synthesis of glycoalkaloids.


Assuntos
Solanum tuberosum , Solanum , Diploide , Fenótipo , Melhoramento Vegetal , Tubérculos/genética , Solanum/genética , Solanum tuberosum/química , Solanum tuberosum/genética
19.
Cell Rep ; 38(13): 110579, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35354037

RESUMO

Tuberization is an important developmental process in potatoes, but it is highly affected by environmental conditions. Temperature is a major environmental factor affecting tuberization, with high temperatures suppressing tuber development. However, the temporal aspects of thermo-responsive tuberization remain elusive. In this study, we show that FT homolog StSP6A is suppressed by temporally distinct regulatory pathways. Experiments using StSP6A-overexpressing plants show that post-transcriptional regulation plays a major role at the early stage, while transcriptional regulation is an important late-stage factor, suppressing StSP6A at high temperatures in leaves. Overexpression of StSP6A in leaves restores tuber formation but does not recover tuber yield at the late stage, possibly because of suppressed sugar transport at high temperatures. Transcriptome analyses lead to the identification of potential regulators that may be involved in thermo-responsive tuberization at different stages. Our work shows that potato has temporally distinct molecular mechanisms that finely control tuber development at high temperatures.


Assuntos
Solanum tuberosum , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos/genética , Tubérculos/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo
20.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35163389

RESUMO

Tuber shape is one of the most important quality traits in potato appearance. Since poor or irregular shape results in higher costs for processing and influences the consumers' willingness to purchase, breeding for shape uniformity and shallow eye depth is highly important. Previous studies showed that the major round tuber shape controlling locus, the Ro locus, is located on chromosome 10. However, fine mapping and cloning of tuber shape genes have not been reported. In this study, the analyses of tissue sectioning and transcriptome sequencing showed that the developmental differences between round and elongated tuber shapes begin as early as the hook stage of the stolon. To fine map tuber shape genes, a high-density genetic linkage map of the Ro region on chromosome 10 based on a diploid segregating population was constructed. The total length of the genetic linkage map was 25.8 cM and the average marker interval was 1.98 cM. Combined with phenotypic data collected from 2014 to 2017, one major quantitative trait locus (QTL) for tuber shape was identified, which explained 61.7-72.9% of the tuber shape variation. Through the results of genotyping and phenotypic investigation of recombinant individuals, Ro was fine mapped in a 193.43 kb interval, which contained 18 genes. Five candidate genes were preliminarily predicted based on tissue sections and transcriptome sequencing. This study provides an important basis for cloning Ro gene(s).


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Loci Gênicos , Tubérculos , Solanum tuberosum , Tubérculos/genética , Tubérculos/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...